STEREOCHEMISTRY ABSTRACTS

Tetrahedron: Asymmetry 1990, 1, 715 R.P. Elliott, G.W.J.Fleet, K.Vogt, F.X.Wilson, Y. Wang, D.R.Witty, R.Storer, P.L.Myers, C.J.Wallis E.e. = 100%[SI]OH₂C $[\alpha]_{D}^{20} = +63.3$ (c, 1.9 in chloroform) ′он Na Source of chirality: D-arabinose as starting material C21H25N3O4Si [Si]=Bu^tPh₂Si 3-azido-5-O-tert-butyldiphenylsily1-3-deoxy-D-ribono-1,4-lactone Tetrahedron: Asymmetry 1990, 1, 715 R.P. Elliott, G.W.J.Fleet, K.Vogt, F.X.Wilson, Y. Wang, D.R.Witty, R.Storer, P.L.Myers, C.J.Wallis E.e. = 100%HOH₂C $[\alpha]_{D}^{20} = +156.7$ (c, 1.54 in acetone) Source of chirality: diacetone glucose as starting material C₅H₇N₃O₄ 3-azido-3-deoxy-D-ribono-1,4-lactone Tetrahedron: Asymmetry 1990, 1, 715 R.P. Elliott, G.W.J.Fleet, K.Vogt, F.X.Wilson, Y. Wang, D.R.Witty, R.Storer, P.L.Myers, C.J.Wallis E.e. = 100%BnOH₂C $[\alpha]_{D}^{20} = +8.0$ (c, 0.85 in chloroform) Source of chirality: D-arabinose as starting material C₁₂H₁₃FO₄ 5-O-benzyl-3-deoxy-3-fluoro-D-arabinono-1,4-lactone Tetrahedron: Asymmetry 1990, 1, 715 R.P. Elliott, G.W.J.Fleet, K.Vogt, F.X.Wilson, Y. Wang, D.R.Witty, R.Storer, P.L.Myers, C.J.Wallis E.e. = 100% $[\alpha]_{D}^{20} = +130.4$ (c, 0.97 in chloroform) HOH₂C Source of chirality: diacetone glucose as starting material C₈H₁₃N₃O₄ 3-azido-3-deoxy-1,2-Oisopropylidene-D-ribofuranose

L. Reymond, P. Vogel

E.e. >99%

$$[\alpha]_D^{20} = -53.6 (c = 1, CH_2Cl_2)$$

Source of chirality: (R,R)-tartaric acid
 $H_{11}NO_5$
hyl (1R,5S,7R)-3-methyl-2-oxo-6,8-dioxa-3-azabicyclo[3.2.1]octane-7-*exo*-carboxylate
DO(Me)-OMe)

L. Reymond, P. Vogel

Tetrahedron: Asymmetry 1990, 1, 729

Tetrahedron: Asymmetry 1990, 1, 737

Tetrahedron: Asymmetry 1990, 1, 737

E.e. >99% $[\alpha]_D^{20} = +53.9 \text{ (c} = 1, CH_2Cl_2)$ Source of chirality: (S,S)-tartaric acid

I₁₂N₂O₅ yanovinyl ((1S,5R,7S)-3-ethyl-2-oxo-6,8-dioxa-3-azabicyclo[3.2.1]octane-7-exo-carboxylate)

hauvin

1-phenyl-2,2,2-trifluoroethanol

E.e.= 43 %.

$$\left[\alpha\right]_{D}^{25} = +12.8$$
 (c=1; CH₂Cl₂).

Source of chirality: asymmetric reduction of trifluoroacetophenone by one epimer of 2-hydroxy-1,2-diphenylethyl phenylphosphinate.

Absolute configuration: S.

Chauvin

D.e.= 84 % crude (by NMR); 100% upon one recrystallization.

$$\left[\alpha\right]_{D}^{25} = +27$$
 (c=1; CH₂Cl₂).

Source of chirality: (R,R)-1,2-diphenyl-1,2-ethanediol.

Absolute configuration at the phosphorus atom: not assigned

ydroxy-1,2-diphenylethyl phenylphosphinate

